5000元2022-06-29 00:00:48
折叠
分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2.0 nm)的孔道和空腔体系,从而具有筛分分子的特性。然而随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2 nm、2~50 nm和大于50 nm的分子筛分别称为微孔、介孔和大孔分子筛。由于具有较大的孔径,成为较大尺寸分子反应的良好载体,但介孔材料的孔壁为非晶态,致使其水热稳定性和热稳定性尚不能满足石油化工应用所需的苛刻条件。
碳分子筛是20世纪七十年代发展起来的一种新型吸附剂,是一种优良的非极性碳素材料,制氮碳分子筛(Carbon Molecular Sieves,CMS)用于分离空气富集氮气,采用常温低压制氮工艺,比传统的深冷高压制氮工艺具有投资费用少,产氮速度快、氮气成本低等优点。因此,它是工程界首选的变压吸附(简称P.S.A)空分富氮吸附剂,这种氮气在化学工业、石油天然气工业、电子工业、食品工业、煤炭工业、医药工业、电缆行业、金属热处理、运输及储存等方面广泛应用
碳分子筛是利用筛分的特性来达到分离氧气、氮气的目的。在分子筛吸附杂质气体时,大孔和中孔只起到通道的作用,将被吸附的分子运送到微孔和亚微孔中,微孔和亚微孔才是真正起吸附作用的容积。如前图所示,碳分子筛内部包含有大量的微孔,这些微孔允许动力学尺寸小的分子快速扩散到孔内,同时限制大直径分子的进入。由于不同尺寸的气体分子相对扩散速率存在差异,气体混合物的组分可以被有效的分离。因此,在制造碳分子筛时,根据分子尺寸的大小,碳分子筛内部微孔分布应在0.28~0.38nm。在该微孔尺寸范围内,氧气可以快速通过微孔孔口扩散到孔内,而氮气却很难通过微孔孔口,从而达到氧、氮分离。微孔孔径大小是碳分子筛分离氧、氮的基础,如果孔径过大,氧气、氮气分子筛都很容易进入微孔中,也起不到分离的作用;而孔径过小,氧气、氮气都不能进入微孔中,也起不到分离的作用。
该装置一般称为制氮机。其工艺流程是采用在常温下变压吸附法(简称P.S.A法),变压吸附为无热源的吸附分离过程,碳分子筛对被吸附组份(主要是氧分子)的吸附容量因上述原理在充压、产气时吸附,在降压排气时解吸,使碳分子筛再生。同时,床层气相富集的氮气穿过床层成为产品气,各步骤连为循环操作。
碳分子筛制氮过程,当一个吸附塔吸附结束时,可将此吸附塔内的有压气体从上下两个方向注入另一个已再生好的吸附塔中,并使两塔气体压力相同,此一过程称为吸附塔的均压,选择适当的均压时间,即可回收能量,也可以减缓吸附塔内的分子筛受到的冲击,从而达到延长碳分子筛的使用寿命。